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Spatial stability results for the developing flow in a rigid circular pipe are presented 
for the velocity profile obtained by the Hornbeck (1963) method and compared with 
the available temporal stability results for the velocity profile obtained by Sparrow, 
Lin & Lundgren (1964). The disturbance is taken to be non-axisymmetric, and Gram- 
Schmidt orthonormalization is used to remove the parasitic errors during numerical 
integration. 

It is found that the stability characteristics are very sensitive to the velocity field 
in the inlet region. At all axial locations investigated the critical frequency and critical 
wavenumber for the Hornbeck profile are larger than the corresponding values for the 
Sparrow profile while the critical Reynolds number is smaller. The minimum critical 
Reynolds number for the Hornbeck profile is only 13250 and occurs at  = 0.0032 
compared with 19780 at = 0.0049 for the Sparrow profile. The maximum difference 
between the two velocity profiles occurs near the boundary-layer edge but is within 
5 yo. Results for the Hornbeck profile are found to be closer to the experimental data of 
Sarpkaya (1975). 

1. Introduction 
The experimentally observed instability of the pipe flow is attributed either to finite 

disturbances (Leite 1959) or to the presence of boundary layer in the inlet region. 
Tatsumi (1952) was the first to study the stability of developing pipe flow. His results 
are, however, unreliable as was pointed out by Chen & Sparrow (1967) and by Chen 
(1969). While Huang & Chen (1974a, b )  did provide temporal stability results for this 
problem, they used the Sparrow profile, the velocity profile obtained by Sparrow et al. 
(1964), and their results do not compare well with the experimental data of Sarpkaya 
(1975). The reason for this discrepancy may be the fact that the Sparrow profile is not 
an accurate description of the developing velocity field in the pipe. The work of 
Schmidt & Zeldin (1969), Crane & Burley (1976), and of Shah (1978) reveals that the 
Hornbeck profile found by Hornbeck ( 1963) gives more accurate velocity description, 
length of entrance region and pressure drop in the developing region. 

It is also well known that Squire’s theorem (Squire 1933) is not applicable in the 
case of axisymmetric flows (Spielberg & Timan 1960). In fact the Hagen-Poiseuille 
flow is known to be less stable to non-axisymmetric disturbances with angular wave- 
number equal to unity than to the axisymmetric disturbances (Garg & Rouleau 1972 ; 
Salwen & Grosch 1972). We therefore consider the linear spatial stability of the 
Hornbeck profile in the developing region of a pipe to non-axisymmetric disturbances. 
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2. Analysis 
We can consider the developing pipe flow as nearly parallel since the radial com- 

ponent of velocity, V ,  in the entrance region is very small compared with the axial 
component, U ,  so that U 2 U ( r ) ,  V N 0 a t  any axial location. Each dimensionless 
component, say [ ( r ,  8, x ,  t ) ,  of the Fourier series corresponding to the arbitrary 
infinitesimal disturbance is assumed to be of the form 

t ( r ,  8,  x ,  t )  = &?[#(r) exp ( i k x  + in8 - iw t ) ] ,  

where W denotes the real part of a complex function; r ,  0, x and t are the dimensionless 
radial, angular, axial and time co-ordinates, w is the real frequency, v, the angular 
wavenumber, and k the axial complex wavenumber. Substitution of such expressions 
for the disturbance pressure and velocity components into the linearized equations of 
motion leads to the following set of four coupled, linear, ordinary differential equations 
after some algebraic manipulation : 

I 
1 1  

D Z + - D - - - A  ( r r2 

f + 9  

where 
f ( r )  = v(r )  + iw(r), g ( r )  = v(r )  - iw(r) ,  

n2 
r2 

A = -+k2+iR(kU-w) ,  

D = d / d r ,  R = Uaa/v, 

R is the Reynolds number, U, is the average velocity of the basic flow a t  any cross- 
section, a is the pipe r a d i u s , ~ ,  u, v and w are the dimensionless complex eigenfunctions 
for disturbance pressure and for disturbance velocity components in the axial, radial 
and angular directions respectively, and v is the kinematic viscosity of the fluid. 

The boundary conditions require that (Garg & Rouleau 1972) 

I f ( 0 )  = u(0) = p ( 0 )  = 0, 

f(1) = g ( l )  = u(1) = 0. 

At each axial location specified by = x/R,  U ( r )  is known (Hornbeck 1963) and the 
solution of equations (2 .1 )  and (2 .2 )  yields the complex eigenvalue k for given values of 
n,  w and R. The flow is unstable when the disturbance grows in the downstream 
direction, i.e. when ki < 0 where ki is the imaginary part of k ,  kr being the real part. 
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3. Solution 
Knowing that the Hagen-Poiseuille flow is least stable to the disturbance with 

n = 1, we consider the solution of equations (2.1) and (2.2) for n = 1 only, hoping that 
the developing pipe flow may be most unstable to such a disturbance. 

Let Y and F be vectors such that Y = {yl ,  yz ,  y3, y4, y5, y6)  = {f, g ,  u, Dg, D u , ~ } ,  and 
F = D Y .  We then find from the boundary conditions a t  the pipe axis ( r  = 0) and from 
equations (2.1) a t  r = 0 that for n = 1 

where B = +[kz+ i R ( k U ( 0 )  - w ) ] ,  and cl, c2 and c3 are finite. 
Thus we can use any standard marching technique, such as the fourth-order Runge- 

Kutta method, for integrating (2.1) from the pipe axis to the wall where satisfaction of 
the no-slip condition in ( 2 . 2 )  yields the eigenvalue k .  The Gram-Schmidt orthonor- 
malization procedure (Garg 1980) is used selectively to remove the parasitic errors 
during numerical integration. Convergence to the eigenvalue is achieved by Muller’s 
method (Muller 1956). The axial spacing, x, required in the Hornbeck method, was 
taken to  be for 0 < x 6 0.01. This was decided on the basis of our efforts to  
reproduce the velocity profile given in Hornbeck (1963). By numerical experimen- 
tation following Collatz (1966, p. 51) i t  was found that a step size of 0.0025 gives an 
error of O( 10-6)  in the eigenvalues when computation is done in double precision mode 
on DEC 1090. Iteration to  the neutral point was terminated for lkil 6 

4. Developing flow velocity profiles 
While Hornbeck (1963) used the finite-difference method for solving the boundary- 

layer type of equations for the developing flow in a pipe, Sparrow et al. (1964) linearized 
the non-linear inertial terms in the Navier-Stokes equations to get a series solution 
for the velocity profile. Figure 1 shows the -velocity and its gradient as obtained by the 
two methods a t  = 0.0014 and 0.00616. It is observed that the two velocity profiles 
differ more from each other near the boundary-layer edge but the maximum difference 
is within 5 yo. The velocity gradients differ marginally near the pipe wall but con- 
siderably (by as much as I00 %) near the boundary-layer edge. The velocity gradient 
for the Hornbeck profile is less than that for the Sparrow profile near the pipe wall but 
rises above i t  mid-way through the boundary-layer thickness. Figure 2 exhibits the 
development of the velocity field as the fluid moves downstream. 

5. Results 
As pointed out already, results for the spatial stability of the Hornbeck profile in a 

pipe to the non-axisymmetric disturbance with n = 1 are provided a t  several axial 
locations. These are compared with those available in Gupta & Garg (1981) for the 
Hornbeck and Sparrow profiles for an axisymmetric disturbance (n = 0), and in 
Huang (1973) for the Sparrow profile for n = 1.  

Figures 3 and 4 show the neutral curves (w vs. R and kr vs. R )  a t  several axial locations 
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FIGURE I .  Developing flow velocity profile and. its gradient in a pipe at two axial locations. 
---, Hornbeck’s profile; - - -, Sparrow’s profile. 
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FIGURE 2. Velocity profiles a t  several axial locations in a pipe. 
-, Hornbeck’s profiles; - - - , Sparrow’s profiles. 
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X* x X *  x 
0.0 0.0 0.001 0.00040 
0.002 0.000 87 0.003 0.001 40 
0.004 0.001 97 0.005 0.002 58 
0.006 0-00323 0-007 0.00392 
0.008 0.004 64 0.009 0.005 39 
0.010 0.006 16 0.015 0.01043 

TABLE 1. Correspondence between X *  and x. 
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FIGURE 3. Neutral curves (w  us. R )  a t  various axial locations for Hornbeck’s profile 
(-, n = 1; , n = 0) and for Sparrow’s profile (- - -, n = 1). 

for both the Hornbeck and Sparrow profiles for n = 0 and 1. Correspondence Eetween 
the physical co-ordinate x and the stretched co-ordinate X* (of Sparrow et al. 1964) 
is given in the table 1. Comparison of the neutral curves corresponding to n = 1 for 
both the velocity profiles a t  x = 0.00616 ( X *  = 0.01) shows that the Hornbeck profile 
is unstable a t  much lower Reynolds numbers and over a wider frequency and wave- 
number range than the Sparrow profile. Similiar results were obtained by Gupta & 
Garg (1981) for the axisymmetric disturbance. These figures also show that in the 
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near entry region, the Hornbeck profile is more unstable to axisymmetric disturbances 
than to the non-axisymmetric disturbances with n = 1 .  

Figure 5 shows the variation of critical Reynolds number R,, critical frequency w,. 
and critical wavenumber krc with x for both the profiles for n = 1 .  It also shows the 
variation of R, with X for n = 0 for both the profiles and contains experimental 
data for Re and we as obtained by Sarpkaya (1975) for n = 1 disturbance. A comparison 
of the R e - x  curves for n = 0 and 1 shows that the developing pipe flow has a lower 
critical Reynolds number in the near entry region for an axisymmetric disturbance. 
While the Hornbeck profile has a lower Re for n = 0 than that for n = 1 disturbance 
for x < 0-006, the Sparrow profile shows this behaviour up to only x = 0.0038. That an 
axisymnietrie disturbance is more unstable than the non-axisymmetrie disturbance 
with n = 1 in the near entry region of a pipe is in direct contrast to the well-known 
result for the Hagen-Poiseuille flow. It may however be explained on the basis that 
in the near entry region the basic flow is of boundary layer type for which Squire’s 
theorem does hold. The minimum critical Reynolds numbers for the Hornbeck profile 
are 11700 and 13250 a t  x = 0.00335 and 0.0032 respectively for the axisymmetric and 
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non-axisymmetric disturbance with n = 1, while for the Sparrow profile, they are 
19800 and i9780 a t  

As x increases the critical Reynolds number passes through a minima for both the 
velocity profiles. We also note from figure 5 that experimental values obtained by 
Sarpkaya (1 975) for R,, though well below the R, vs. x curve for the Hornbeck profile, 
are still closer to it tlhan to the R,vs. x curve for the Sparrow profile. Sarpkaya found 
the minimum R, to be about 3800 for x in the range 0.012 < < 0-02. However, as 
Sarpkaya himself noted, his critical Reynolds numbers may be low due to a higher 
initial disturbance level than that warranted by the linear theory. Sarpkaya’s experi- 
mental results for the critical frequency corresponding to the n = 1 disturbance also 
compare better with those found here for the Hornbeck profile than those found by 
Huang (1973) for the Sparrow profile. It is clear from figure 5 that both w, and krc for 
the Hornbeck profile are larger than the corresponding values for the Sparrow profile, 
and that with increasing both decrease first sharply and then gradually. Also, as x 
increases, all corresponding curves for both the velocity profiles approach each other. 
This is because the difference between the two velocity profiles decreases with 
increasing S. 

As already noted the maximum difference between the two velocity profiles is 
within 5 yo. Sarpkaya (1975) points out that his experimentally observed velocity 

= 0.00325 and 0.0049 respectively. 
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profile also agrees with the Sparrow profile to within 5 % .  It would have been 
interesting to compare the experimental and the Hornbeck velocity profiles especially 
when we find that the Hornbeck velocity profile gives stability characteristics that 
are closer to the experimental ones. Unfortunately, however, Sarpkaya’s velocity 
profiles are not available. 

6. Conclusions 
It is found that in the near entry region the developing pipe flow is more unstable to 

an axisymmetric disturbance than to the non-axisymmetric disturbance with n = 1.  
This is in direct contrast to the well-known result for the Hagen-Poiseuille flow. 
A comparison of the stability characteristics for the Hornbeck and Sparrow velocity 
profiles reveals that the Hornbeck profile yields much lower critical Reynolds numbers 
but slightly higher critical frequencies and wavenumbers than the Sparrow profile. 
Also, results obtained here for the Hornbeck profile are closer to the experimental 
values. 

Assistance of Mr S.C.Gupta in carrying out a few computations is gratefully 
acknowledged. 
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